Журнал «Здоровье ребенка» 3(18) 2009
Вернуться к номеру
Нанотехнологии в практике кардиолога Часть I Липосомы как идеальные средства доставки лекарственных препаратов
Авторы: Третьякова О.С., Заднипряный И.В.
Крымский государственный медицинский университет им. С.И. Георгиевского
Рубрики: Педиатрия/Неонатология
Версия для печати
...В ближайшее время практическое применение найдут не менее 15 новых курсов терапии, основанных на липосомной технологии, а продажа липосом на мировом рынке составит 20–25 % средств доставки лекарственных препаратов
Марк Дж. Остро, вице-президент Liposome Company, USA, 2007
Нанотехнологиям, в том числе наномедицине и нанофармакологии, принадлежит особое место среди современных направлений науки и практики. Появлению и в дальнейшем развитию новых технологий предшествовало судьбоносное выступление с докладом-лекцией американского ученого-физика Ричарда Фельдмана (в последующем лауреата Нобелевской премии) на заседании Американского физического общества в 1959 г. с интригующим названием «Внизу много места: приглашение войти в новый раздел физики» («внизу» — терминология физиков, что означает «на микро- и наноуровнях»).
Термин «нанотехнология» (греч.: nanos — гномик, карлик; techno — мастерство; logos — наука) был предложен в 1974 г. японским ученым Норио Танигути и применим по отношению к объектам размерами 10–9 метра (от 1 до 100 нм). И если в середине ХХ века это казалось в большей степени перспективой, взглядом в будущее, то сейчас это реалии жизни.
Широкий интерес к продуктам нанотехнологий в медицине обусловлен возможностью их использования для диагностики, лечения и профилактики различных заболеваний. В рамках этой публикации не представляется возможным осветить все аспекты применения нанотехнологий в медицине, поэтому считаем целесообразным и интересным для практической аудитории освещение вопроса применения нанопродуктов в кардиологии.
На протяжении многих десятилетий проводились (и не прекращаются до сих пор) поиски идеальных систем доставки лекарственных средств, что является вполне объяснимым и объективным фактором. Как известно, заболевания поражают прежде всего отдельные органы и ткани. Так, например, при инфаркте миокарда главные события происходят в мышце сердца, при воспалительном процессе — в конкретных органах-мишенях. Поэтому продолжительность лечения и его успешность напрямую зависят от реализации действия лекарственных препаратов непосредственно в очаге заболевания. Особенно это важно в тех случаях, когда в процессе лечения возникает необходимость применения весьма токсичных препаратов, эффективных в отношении самого заболевания, но при этом оказывающих токсическое действие на другие системы организма. Часто это заставляет отказываться от использования подобных веществ и прибегать к применению менее эффективных препаратов.
Создать нужную концентрацию лекарственных веществ в пораженных болезнью местах, не затрагивая остальные, — задача непростая. Ведь медикаменты, каким бы способом их ни вводили, распределяются по всему организму более или менее равномерно. А для того, чтобы они попали в патологический очаг, необходим носитель, который бы доставил препараты к месту назначения. В связи с этим поиски таких идеальных носителей продолжаются и по сей день.
При проведении фармакотерапии главной целью доставки лекарственных средств является сохранение высокого уровня лекарственного препарата в крови. До недавнего времени внутривенно вводили только истинные растворы. Дисперсные же вещества не использовались, так как присутствие частиц эмульсии или суспензий может привести к закупорке капилляров — эмболии. Поэтому исследователи давно пытались найти ответ на вопрос: какими же должны быть размеры частиц дисперсий, чтобы можно было избежать развития эмболии? Известно, что размеры эритроцитов (диаметр которых 7 мкм) позволяют им свободно проходить через просвет любых сосудов. Учитывая способность этих клеток изменять свою форму по мере продвижения в сосудистом русле, принято считать, что безопасными могут быть дисперсии с размером частиц значительно меньшим, чем размеры эритроцитов, а именно с диаметром менее 1 мкм, то есть нанодиапазона.
Наночастицы в зависимости от агрегатного состояния и морфологических особенностей подразделяют на нанокристаллы, нанокапсулы, наносферы и полимерные мицеллы.
К группе наносфер относят липосомы (другие названия: липидные пузырьки, липидные везикулы, липидные сферулы, фосфолипидные наночастицы). Липосомы (от греч. lipos — жир и sоma — тело) — это микроскопические сферические частицы, заполненные жидкостью, оболочка которых состоит из молекул тех же природных фосфолипидов, что и клеточные мембраны. Пальма первенства в выявлении идентичности строения оболочки липосом и клеточных мембран принадлежит мало кому известному в 70-е годы ХХ столетия английскому врачу-патологу Алеку Бэнгхему и соавт. Именно они в 1965 г. заметили, что фосфолипидные сферулы, или липосомы, устроены «по образу и подобию» мембраны человеческих клеток.
Уже тогда было известно, что клеточные оболочки выполняют много функций, поэтому липосомы вначале использовались как модельная система при изучении биологических мембран, а c 1971 г. эти чудо-пузырьки стали использоваться в медицинских целях как средство доставки лекарственных препаратов. Липосомы помогают дольше сохранять высокий уровень концентрации лекарственных препаратов в крови и в клетках, а также способствуют лучшему проникновению препаратов в те области, куда без липосом они попасть не могут. В настоящее время это, пожалуй, наиболее активно развивающееся направление практического использования этих наночастиц.
%202009/118/118_1.jpg)
Строение липосом
Липосомы образованы одним или несколькими концентрическими замкнутыми липидными бислoями. Внутренний водный объем липосом изолирован от внешней среды (рис. 1).
Напомним, что оболочка липосом состоит из 2 слоев природных фосфолипидов, идентичных фосфолипидам клеточных мембран. Липосомы в зависимости от размера частиц и числа образующих их липидных слоев (рис. 2) разделяют:
1)на малые моноламеллярные, образованные одиночным липидным бислоем (диаметр 20–50 нм);
2) крупные моноламеллярные, образованные также одиночным бислоем (диаметр 50–200 нм и выше);
3) многослойные (мультиламеллярные), насчитывающие до нескольких десятков и даже сотен липидных бислоев (диаметр до 5000–10 000 нм).
Размеры и форма липосом зависят от кислотности среды, присутствия солей и многих других факторов. Внешне липосомы не всегда выглядят как глобулярные частицы. Иногда они принимают уплощенную дискообразную форму (так называемые дискомы) или имеют вид очень длинных и тонких трубок, которые называют тубулярными липосомами.
В ходе изучения липосом выявлено, что пустующее пространство внутри липосомы может быть заполнено любыми веществами. Именно эта способность липосом включать в себя самые разные вещества практически без каких-либо ограничений в отношении их химической природы, свойств и размера молекул дала уникальную возможность для решения многих медицинских проблем. Круг веществ, включаемых в липосомы, необычайно широк — от неорганических ионов и низкомолекулярных органических соединений, крупных белков и нуклеиновых кислот до широкого круга фармакологически активных веществ.
Липосомы могут быть заполнены антибиотиками, гормонами, ферментами, иммуномодуляторами, цитостатиками, противовирусными и противогрибковыми препаратами, витаминами, вакцинами, веществами метаболического действия и даже генетическим материалом.
%202009/118/118_2.jpg)
Свойства липосом
Липосомы обладают огромным количеством преимуществ по сравнению с другими лекарственными формами. Наиболее значимые из них:
1. Уникальная способность доставки лекарственных препаратов внутрь клеток. На рис. 3 представлены возможные варианты взаимодействия липосом с клетками. Формы взаимодействия могут быть самыми разными, наиболее простая: липосомы адсорбируются (прикрепляются) на поверхности клетки. Процесс на этом может закончиться, а может пойти дальше: при определенных условиях клетка может поглотить липосому (этот процесс «заглатывания» называется эндоцитоз), и тогда вместе с ней внутрь клетки попадают вещества, находящиеся внутри липосомы (внутриклеточная доставка). Наконец, они могут слиться с мембранами клеток и стать их частью. При этом свойства клеточных мембран могут изменяться: например, их вязкость и проницаемость, величина электрического заряда. Может также увеличиваться или уменьшаться количество каналов, проходящих через мембраны. Таким образом, благодаря липосомам появился новый способ направленного воздействия на клетку, который называется мембранной инженерией.
2. Биосовместимость: сродство с мембранами клеток по химическому составу. С точки зрения биологической со-
вместимости липосомы идеальны как переносчики лекарственных препаратов, так как их мембрана состоит из природных фосфолипидов, составлящих от 20 до 80 % их массы.
3. Отсутствие аллергических реакций: липосомы, лишенные свойств антигена, надежно укрывают свой «груз» от контакта с иммунной системой и, соответственно, не вызывают антигенной стимуляции.
4. Защита лекарственного препарата от деградации в организме. Как уже отмечалось, липосомы выступают в качестве своеобразного контейнера, надежно защищая свое содержимое от повреждающего воздействия внешних факторов, в частности от разрушения в желудочно-кишечном тракте, что обеспечивает доставку препарата к месту назначения и продление времени его действия.
Как оказалось, эти чудо-пузырьки обладают уникальной способностью изменять свою форму и размер в зависимости от окружающей среды. Пластичные мембранные сферы, имеющие микроскопические размеры, легко проникают в межклеточные промежутки и успешно минуют толщу эпидермиса. Свойства липосом и их поведение определяются, прежде всего, наличием у них замкнутой мембранной оболочки. Несмотря на молекулярную толщину (около 4 нм), липидный бислой отличается исключительной механической прочностью и гибкостью. В жидкокристаллическом состоянии бислоя его компоненты обладают высокой молекулярной подвижностью, так что в целом мембрана ведет себя как достаточно жидкая, текучая фаза, в которой происходит броуновское движение молекул липидов. Благодаря этому липосомы сохраняют целостность при различных повреждающих воздействиях, а их мембрана обладает способностью к самозалечиванию возникающих в ней структурных дефектов. Вместе с тем гибкость бислоя и его текучесть придают липосомам высокую пластичность. Так, липосомы меняют размеры и форму в ответ на изменение осмотической концентрации внешнего водного раствора. При сильном осмотическом стрессе целостность бислоя может нарушиться, и липосомы могут раздробиться на частицы меньшего размера.
5. Изменение фармакокинетики препаратов и повышение их терапевтической эффективности. Это свойство напрямую связано с предыдущим. Известно, что во многих случаях лекарственный препарат при введении в организм может быстро терять активность под действием инактивирующих агентов. Включение таких препаратов в липосомы значительно повышает их терапевтическую эффективность, поскольку, с одной стороны, препарат, находящийся в липосоме, защищен ее мембраной от воздействия неблагоприятных факторов, в том числе ферментов, что увеличивает эффективность препаратов, подверженных биодеструкции в биологических жидкостях, а с другой — та же мембрана не позволяет токсичному препарату превысить допустимую концентрацию в биологических жидкостях организма. Липосома в данном случае играет роль хранилища, из которого препарат высвобождается постепенно, в нужных дозах и в течение требуемого промежутка времени.
6. Снижение общетоксического действия на организм: защита клеток от токсического действия лекарств, заключенных в липосомы. Известно, что размер наночастиц больше диаметра пор капилляров и объем их распределения ограничивается областью введения. При внутривенном введении липосомы не выходят за пределы кровотока, т.е. плохо проникают в органы и ткани. Соответственно, резко снижается токсическое действие субстанции, ассоциированной с наночастицами. Помимо этого, не секрет, что многие лекарственные препараты имеют низкий терапевтический индекс. Это означает, что концентрация, в которой они оказывают лечебное действие, мало отличается от концентрации, при которой препарат становится токсичным. Тот факт, что липосомы не задерживаются такими органами, как сердце, почки, мозг, а также клетками нервной системы, позволяет за счет использования липосомных лекарственных форм значительно снизить кардиотоксичность, нефротоксичность и нейротоксичность ценных препаратов, применяемых для лечения заболеваний.
7. Универсальность: «адресная» доставка препарата к органу-мишени, что достигается путем прикрепления к поверхности липосом специфических молекул (например, Ig), обеспечивающих «узнавание» клетки (рис. 4).
7. Биодоступность. Этот эффект липосом обеспечивается за счет создания водорастворимых форм ряда лекарственных веществ.
9. Способность к биодеградации. Липосомы сравнительно легко разрушаются в организме, высвобождая доставленные вещества.
10. Эффект пассивного нацеливания: направленная доставка и накапливание медикаментозных препаратов в очагах воспаления, ишемии, опухолях и других патологически измененных областях. Этому способствует проникновение липосом через поры капилляров в пораженные области, так как сосуды микроциркуляторного русла в «горячих» точках перфорированы, что создает условия для выхода этих наночастиц за их пределы (рис. 5). В норме этого не происходит, так как размеры липосом больше, чем поры капилляров, за счет чего они удерживаются в полости сосудов и не выходят за их пределы.
Однако ситуация с терапевтическим применением липосом не так проста, как хотелось бы. Использование липосом для точной, целенаправленной доставки лекарственных веществ имеет определенные ограничения. Эффективность их использования как носителей лекарств во многом зависит еще и от того, сумеют ли они сохранить свою целостность после введения в организм. Оказалось, что липосомы недостаточно стабильны в крови. Время пребывания обычных липосом в кровотоке невелико (от нескольких минут до нескольких часов). Дело в том, что у них имеется весьма серьезный «враг» — сыворотка крови, и после попадания в организм большая часть липосом поглощается клетками ретикулоэндотелиальной системы (РЭС), состоящей в основном из макрофагов, способных поглощать из крови посторонние частицы и уничтожать (переваривать) их, что необходимо для поддержания постоянства внутренней среды. Кратковременность пребывания липосом в кровотоке напрямую связана с взаимодействием липосом с белками плазмы — опсонинами (в основном компонентами комплемента). Опсонины как бы метят их и делают мишенями для клеток РЭС (рис. 6). Поэтому липосомы, попадая в кровоток, как правило, становятся добычей макрофагов и не доходят до цели. Наибольшее скопление макрофагов находится в печени, селезенке, костном мозге, лимфатических узлах и кровотоке. Поэтому липосомные носители обычно сложно направить именно в те органы и ткани, где разворачивается патологический процесс.
%202009/118/118_3.jpg)
Однако нет ничего такого, что бы остановило ученых в поисках решения, казалось бы, нерешаемого вопроса. Уже сейчас найдены способы, позволяющие увеличить устойчивость липосом к действию липопротеинов. Например, повышению их устойчивости способствует введение в состав липосом холестерина. Есть и другие варианты изменения их состава, позволяющие успешно защищать липосомы от разрушения сывороткой крови. Как выяснилось, если эти везикулы соединены с антителами к белкам-адресатам, то большая часть липосом успевает прибыть к месту назначения раньше, чем произойдет их встреча с макрофагом. Еще более значимыми будут результаты в ситуации, когда вначале вводятся липосомы без «груза» (например, липин), а следом — липосомы с лекарством, тогда первые поглощаются макрофагами, а вторые без помех доходят до цели.
Для преодоления захвата липосом мононуклеарами РЭС были разработаны также липосомы-невидимки. Выяснилось, что клетки, вылавливающие липосомы из крови, можно обмануть, сделав поверхность липосом гидрофильной. С этой целью в липидный слой липосом встраивают полиэтиленгликоль (ПЭГ), что приводит к повышению осмотического давления вокруг них и препятствует сближению наночастиц с клеткой. Эти везикулы называются пегилированными липосомами, они невидимы для клеток РЭС и долгое время циркулируют в крови. Помимо этого, что еще более важно, такие липосомы постепенно накапливаются в тех местах, где кровеносные сосуды имеют дефекты, т.е. повреждены, обладают повышенной проницаемостью или вообще плохо развиты, что обычно характерно для опухолей и окружающих их тканей, а также инфекционных и воспалительных процессов. Необычные свойства полиэтиленгликольсодержащих липосом и их высокая терапевтическая эффективность так поразили исследователей, что эти липосомы получили образное название липосомы-невидимки (stealth liposomes) аналогично известному самолету-невидимке «стелс», который не удается обнаружить с помощью радарных устройств.
