Список литературы
1. Vodanovi M, Subai M, Miloevi D, Savi Paviin I. Artificial Intelligence in Medicine and Dentistry. Acta Stomatol Croat. 2023;57(1):70-84. doi: 10.15644/asc57/1/8.
2. Surlari Z, Budal DG, Lupu CI, Stelea CG, Butnaru OM, Luchian I. Current Progress and Challenges of Using Artificial Intelligence in Clinical Dentistry — A Narrative Review. J Clin Med. 2023;12(23):7378. doi: 10.3390/jcm12237378.
3. Eschert T, Schwendicke F, Krois J, Bohner L, Vinayahalingam S, Hanisch M. A Survey on the Use of Artificial Intelligence by Clinicians in Dentistry and Oral and Maxillofacial Surgery. Medicina (Kaunas). 2022;58(8):1059. doi: 10.3390/medicina58081059.
4. Samaranayake L, Tuygunov N, Schwendicke F, et al. The Transformative Role of Artificial Intelligence in Dentistry: A Comprehensive Overview. Part 1: Fundamentals of AI, and its Contemporary Applications in Dentistry. Int Dent J. 2025;75(2):383-396. doi: 10.1016/j.identj.2025.02.005.
5. Rahim A, Khatoon R, Khan TA, et al. Artificial intelligence-powered dentistry: Probing the potential, challenges, and ethicality of artificial intelligence in dentistry. Digit Health. 2024;10:20552076241291345. doi: 10.1177/20552076241291345.
6. Yazdanian M, Karami S, Tahmasebi E, et al. Dental Radiographic/Digital Radiography Technology along with Biological Agents in Human Identification. Scanning. 2022 Jan18;2022:5265912. doi: 10.1155/2022/5265912.
7. Favaretto M, Shaw D, De Clercq E, Joda T, Elger BS. Big Data and Digitalization in Dentistry: A Systematic Review of the Ethical Issues. Int J Environ Res Public Health. 2020;17(7):2495. doi: 10.3390/ijerph17072495.
8. Reyes LT, Knorst JK, Ortiz FR, Ardenghi TM. Scope and challenges of machine learning-based diagnosis and prognosis in clinical dentistry: A literature review. J Clin Transl Res. 2021;7(4):523-539.
9. Semerci ZM, Yardımcı S. Empowering Modern Dentistry: The Impact of Artificial Intelligence on Patient Care and Clinical Decision Making. Diagnostics (Basel). 2024;14(12):1260. doi: 10.3390/diagnostics14121260.
10. Al-Zubaidi SM, Muhammad Shaikh G, Malik A, et al. Exploring Faculty Preparedness for Artificial Intelligence-Driven Dental Education: A Multicentre Study. Cureus. 2024 Jul 11;16(7):e64377. doi: 10.7759/cureus.64377.
11. Alqutaibi AY, Hamadallah HH, Oqbi HF, Almuzaini SA, Borzangy S. Current applications and future perspective of virtual reality in dental education and practice in Saudi Arabia: A scoping review. Saudi Dent J. 2024;36(11):1406-1416. doi: 10.1016/j.sdentj.2024.09.007.
12. Ghods K, Azizi A, Jafari A, Ghods K. Application of Artificial Intelligence in Clinical Dentistry, a Comprehensive Review of Lite-rature. J Dent (Shiraz). 2023;24(4):356-371. doi: 10.30476/dentjods.2023.96835.1969.
13. Sivari E, Senirkentli GB, Bostanci E, Guzel MS, Acici K, Asuroglu T. Deep Learning in Diagnosis of Dental Anomalies and Di-seases: A Systematic Review. Diagnostics (Basel). 2023;13(15):2512. doi: 10.3390/diagnostics13152512.
14. Schwendicke F, Chaurasia A, Arsiwala L, et al. Deep learning for cephalometric landmark detection: systematic review and meta-analysis. Clin Oral Investig. 2021;25(7):4299-4309. doi: 10.1007/s00784-021-03990-w.
15. Hundur Hiyari M, Pasic M, Zukic S. Application of Convolutional Neural Networks for Determining Gender and Age in Forensic Dentistry. Cureus. 2024;16(11):e73028. doi: 10.7759/cureus.73028.
16. Minhas S, Wu TH, Kim DG, Chen S, Wu YC, Ko CC. Artificial Intelligence for 3D Reconstruction from 2D Panoramic X-rays to Assess Maxillary Impacted Canines. Diagnostics (Basel). 2024;14(2):196. doi: 10.3390/diagnostics14020196.
17. Chen W, Dhawan M, Liu J, et al. Mapping the Use of Artificial Intelligence-Based Image Analysis for Clinical Decision-Making in Dentistry: A Scoping Review. Clin Exp Dent Res. 2024;10(6):e70035. doi: 10.1002/cre2.70035.
18. Khnisch J, Meyer O, Hesenius M, Hickel R, Gruhn V. Ca–ries Detection on Intraoral Images Using Artificial Intelligence. J Dent Res. 2022;101(2):158-165. doi: 10.1177/00220345211032524.
19. Al-Khalifa KS, Ahmed WM, Azhari AA, Qaw M, Alsheikh R, Alqudaihi F, Alfaraj A. The Use of Artificial Intelligence in Caries Detection: A Review. Bioengineering (Basel). 2024;11(9):936. doi: 10.3390/bioengineering11090936.
20. Esmaeilyfard R, Bonyadifard H, Paknahad M. Dental Caries Detection and Classification in CBCT Images Using Deep Learning. Int Dent J. 2024;74(2):328-334. doi: 10.1016/j.identj.2023.10.003.
21. Chau RCW, Li GH, Tew IM, et al. Accuracy of Artificial Intelligence-Based Photographic Detection of Gingivitis. Int Dent J. 2023;73(5):724-730. doi: 10.1016/j.identj.2023.03.007.
22. Li S, Liu J, Zhou Z, et al. Artificial intelligence for caries and periapical periodontitis detection. J Dent. 2022;122:104107. doi: 10.1016/j.jdent.2022.104107.
23. Schaake R, Leopold I, Sandberg A, et al. Virtual Reality for the Management of Pain and Anxiety for IR Procedures: A Prospective, Randomized, Pilot Study on Digital Sedation. J Vasc Interv Radiol. 2024;35(6):825-833. doi: 10.1016/j.jvir.2024.03.004.
24. De Souza AB, Kang M, Negreiros WM, El-Rafie K, Finkelman M, Papaspyridakos P. A comparative retrospective study of different surgical guide designs for static computer-assisted implant surgery in posterior single edentulous sites. Clin Oral Implants Res. 2022;33(1):45-52. doi: 10.1111/clr.13858.
25. Kapoor DU, Saini PK, Sharma N, et al. AI illuminates paths in oral cancer: transformative insights, diagnostic precision, and personalized strategies. EXCLI J. 2024;23:1091-1116. doi: 10.17179/excli2024-7253.
26. Al-Rawi N, Sultan A, Rajai B, et al. The Effectiveness of Artificial Intelligence in Detection of Oral Cancer. Int Dent J. 2022;72(4):436-447. doi: 10.1016/j.identj.2022.03.001.
27. Свінціцький А.В., Климова В.В., Сендецький С.С. Використання штучного інтелекту в медицині, хірургії, стоматології, онкології. Клінічна онкологія. 2024;56(4):1-4.
28. Sismanoglu S, Ercal P. Dentin-Pulp Tissue Regeneration Approaches in Dentistry: An Overview and Current Trends. Adv Exp Med Biol. 2020;1298:79-103. doi: 10.1007/5584_2020_578.
29. Kwak GH, Kwak EJ, Song JM, et al. Automatic mandibular canal detection using a deep convolutional neural network. Sci Rep. 2020;10(1):5711. doi: 10.1038/s41598-020-62586-8.
30. Oliveira-Santos N, Jacobs R, Picoli FF, Lahoud P, Nic–––-l–aes L, Groppo FC. Automated segmentation of the mandibular canal and its anterior loop by deep learning. Sci Rep. 2023;13(1):10819. doi: 10.1038/s41598-023-37798-3.
31. Morgan N, Van Gerven A, Smolders A, de Faria Vasconcelos K, Willems H, Jacobs R. Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images. Sci Rep. 2022;12(1):7523. doi: 10.1038/s41598-022-11483-3.
32. Altalhi AM, Alharbi FS, Alhodaithy MA, et al. The Impact of Artificial Intelligence on Dental Implantology: A Narrative Review. Cureus. 2023;15(10):e47941. doi: 10.7759/cureus.47941.
33. Ayad N, Schwendicke F, Krois J, et al. Patients’ perspectives on the use of artificial intelligence in dentistry: a regional survey. Head Face Med. 2023;19(1):23. doi: 10.1186/s13005-023-00368-z.
34. Chen Q, Huang J, Salehi HS, et al. Hierarchical CNN-based occlusal surface morphology analysis for classifying posterior tooth type using augmented images from 3D dental surface models. Comput Methods Programs Biomed. 2021;208:106295. doi: 10.1016/j.cmpb.2021.106295.
35. Blain L. Fully-automatic robot dentist performs world’s first human procedure. New Atlas. 2024. Available from: https://newatlas.com/health-wellbeing/robot-dentist-world-first.
36. Cen Y, Huang X, Liu J, et al. Application of three-dimensional reconstruction technology in dentistry: a narrative review. BMC Oral Health. 2023;23(1):630. doi: 10.1186/s12903-023-03142-4.
37. Alam MK, Alftaikhah SAA, Issrani R, et al. Applications of artificial intelligence in the utilisation of imaging modalities in dentistry: A systematic review and meta-analysis of in-vitro studies. Heliyon. 2024;10(3):e24221. doi: 10.1016/j.heliyon.2024.e24221.
38. Yeslam HE, Freifrau von Maltzahn N, Nassar HM. Revolutionizing CAD/CAM-based restorative dental processes and materials with artificial intelligence: a concise narrative review. PeerJ. 2024;12:e17793. doi: 10.7717/peerj.17793.
39. Saini RS, Alshadidi AAF, Rakhra J, et al. Text mining analysis of scientific literature on digital intraoral scanners in dentistry: Bibliometric analysis. Digit Health. 2024;10:20552076241260837. doi: 10.1177/20552076241260837.
40. Bayraktar Y, Ayan E. Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs. Clin Oral Investig. 2022;26(1):623-632. doi: 10.1007/s00784-021-04040-1.
41. Висоцький А.А., Суріков О.О., Василюк-Зайцева С.В. Розвиток штучного інтелекту в сучасній медицині. Український медичний часопис. 2023;154(2):1-4.
42. Bahadir HS, Keskin NB, akmak EK, Gne G, Cesur Aydin K, Peker F. Patients’ attitudes toward artificial intelligence in dentistry and their trust in dentists. Oral Radiol. 2025;41(1):52-59. doi: 10.1007/s11282-024-00775-1.
43. Kosan E, Krois J, Wingenfeld K, Deuter CE, Gaudin R, Schwendicke F. Patients’ Perspectives on Artificial Intelligence in Dentistry: A Controlled Study. J Clin Med. 2022;11(8):2143. doi: 10.3390/jcm11082143.
44. Alfaraj A, Nagai T, AlQallaf H, Lin WS. Race to the Moon or the Bottom? Applications, Performance, and Ethical Considerations of Artificial Intelligence in Prosthodontics and Implant Dentistry. Dent J (Basel). 2024;13(1):13. doi: 10.3390/dj13010013.
45. Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res. 2020;99(7):769-774. doi: 10.1177/0022034520915714.