Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Oral and General Health Том 6, №1, 2025

Вернуться к номеру

Клінічні аспекти використання цифрового 3D внутрішньоротового сканування

Авторы: Скрипник І.Л., Кримовський К.Г.
Національний медичний університет імені О.О. Богомольця, м. Київ, Україна

Рубрики: Стоматология

Разделы: Справочник специалиста

Версия для печати


Резюме

З технологічним прогресом у стоматології ортодонтія також стала свідком величезного сплеску 3D-підходів до управління клінічною практикою. Навчальні моделі є основними і найважливішими передумовами для діагностики та планування лікування в будь-якому ортодонтичному випадку, і протягом останнього десятиліття вони стали цифровими. У цьому огляді всебічно розглядаються дані сучасної літератури щодо точності відтворювання, часу сканування, комфорту для пацієнта та досвіду лікаря стоматолога-ортодонта при застосуванні інтраорального сканування в ортодонтії. Процедура інтраорального сканування економить час, є комфортною для пацієнтів і простою у використанні, а лікар стоматолог-ортодонт може швидко навчитися. Ці методи є достатньо точними для планування лікування та виготовлення елайнерів в ортодонтії. Метою даного огляду є критичне оцінювання особливостей використання різних інтраоральних сканерів та опублікованих досліджень. Cканери останнього покоління продемонстрували дуже низьку похибку при знятті повних відбитків. З точки зору відтворюваності інтраоральні сканери продемонстрували відмінні результати, а також вищу ефективність, ніж традиційні методи зняття відбитків. Дослідження, у яких порівнювався час, необхідний для отримання внутрішньоротових відбитків на всю дугу та звичайних відбитків, доступні для широкого загалу. Ці результати суперечливі за своєю суттю: деякі дослідження демонструють, що внутрішньоротові сканери є більш ефективними та скорочують робочий час порівняно з традиційними методами отримання відбитків. Однак деякі дослідження показали, що альгінатні відбитки потребують менше часу від ортодонта, ніж цифрові. Хоча час сканування довший, ніж у традиційних методів зняття відбитків, пацієнти надають перевагу цифровому скануванню через простоту використання та комфорт. Такі фактори, як дихання, нюх, смак і блювотний рефлекс, контролюються за допомогою цифрових відбитків. Відмова від відбиткових матеріалів і ложок значно покращує комфорт пацієнта. Більшість ортодонтів вказала, що внутрішньоротове сканування є кращим варіантом у їхній практиці.

With technological advances in dentistry, orthodontics has also witnessed a huge surge in 3D approaches to clinical practice management. Learning models are the basic and most important prerequisites for diagnosis and treatment planning in any orthodontic case, and in the last decade, they have become digital. This review comprehensively examines the current literature on the accuracy of reproducibility, scanning time, patient comfort and orthodontist experience of intraoral scanning (IOS) in orthodontics. IOS is time-saving, patient-friendly and easy to use, and an orthodontist can learn quickly. These methods are accurate enough for treatment planning and aligner fabrication in orthodontics. The purpose of this review is to critically evaluate the features of different IOS and published studies. Scanners of the latest generation have demonstrated very low error when taking full impressions. In terms of reproducibility, IOS has demonstrated excellent results and higher efficiency than traditional impression taking methods. Studies comparing the time required to take full-arch intraoral digital impressions and conventional impressions have been widely published. These results are inherently contradictory, with some research demonstrating that IOS is more efficient and reduces working time compared to traditional impression taking methods. However, other studies have shown that alginate impressions take less time than digital ones. Although the scanning time is longer than that of traditional impression methods, patients prefer digital scanning because of ease of use and comfort. Factors such as breathing, smell, taste, and gag reflex are monitored with digital impressions. The refusal of impression materials and trays significantly enhances patient comfort. Most orthodontists indicated that IOS is the preferred option in their practice.


Ключевые слова

ортодонтія; цифрові технології; інтраоральне сканування; 3D-зображення; цифрові сканери; огляд

orthodontics; digital technologies; intraoral scanning; 3D images; digital scanners; review


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Agnini A, Agnini A, Coachman C. The Digital Revolution: The Learning Curve. Quintessence Publishing. 2015:416.
2. Ahlholm P, Sipil K, Vallittu P, Jakonen M, Kotiranta U. Digital versus conventional impressions in fixed prosthodontics: a review. J. Prosthodont. 2018;27(1):35-41. https://doi.org/10.1111/jopr.12527.
3. Amornvit P, Rokaya D, Sanohkan S. Comparison of accuracy of current ten intraoral scanners. Biomed. Res. Int. 2021;13(2021):2673040. https://doi.org/10.1155/2021/2673040.
4. Aragn ML, Pontes LF, Bichara LM, Flores-Mir C, Normando D. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. Eur. J. Orthod. 2016;38(4):429-434. https://doi.org/10.1093/ejo/cjw033.
5. Burhardt L, Livas C, Kerdijk W, van der Meer WJ, Ren Y. Treatment comfort, time perception, and preference for conventio–nal and digital impression techniques: a comparative study in young patients. Am. J. Orthod. Dentofac. Orthop. 2016;150(2):261-267. https://doi.org/10.1016/j.ajodo.2015.12.027.
6. Burzynski JA, Firestone AR, Beck FM, Fields Jr HW, Deguchi T. Comparison of digital intraoral scanners and alginate impressions: time and patient satisfaction. Am. J. Orthod. Dentofacial Orthop. 2018;153(4):534-541. https://doi.org/10.1016/j.ajodo.2017.08.017.
7. Chochlidakis KM, Papaspyridakos P, Geminiani A, Chen CJ, Feng IJ, Ercoli C. Digital versus conventional impressions for fixed prosthodontics: a systematic review and meta-analysis. J. Prosthet. Dent. 2016;116(2):184-190.e12. https://doi.org/10.1016/j.prosdent.2015.12.017.
8. Christensen GJGJ. Will digital impressions eliminate the current problems with conventional impressions? J. Am. Dent. Assoc. 2008;139(6):761-763. https://doi.org/10.14219%2Fjada.archive.2008.0258.
9. Duvert R, Gebeile-Chauty S. Is the precision of intraoral digital impressions in orthodontics enough? Orthod. Fr. 2017;88(4):347-354. https://doi.org/10.1051/orthodfr/2017024.
10. Ender A, Attin T, Mehl A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J. Prosthet. Dent. 2016;115(3):313-320. https://doi.org/10.1016/j.prosdent.2015.09.011.
11. Ender A, Mehl A. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J. Prosthet. Dent. 2013;109(2):121-128. https://doi.org/10.1016/s0022-3913(13)60028-1.
12. Glisic O, Hoejbjerre L, Sonnesen L. A comparison of patient experience, chair-side time, accuracy of dental arch measurements and costs of acquisition of dental models. Angle Orthod. 2019;89(6):868-875. https://doi.org/10.2319/020619-84.1.
13. Goracci C, Franchi L, Vichi A, Ferrari M. Accuracy, reliability, and efficiency of intraoral scanners for full-arch impressions: a systematic review of the clinical evidence. Eur. J. Orthod. 2016;38(4):422-428. https://doi.org/10.1093/ejo/cjv077.
14. Grunheid T, McCarthy SD, Larson BE. Clinical use of a direct chairside oral scanner: an assessment of accuracy, time, and patient acceptance. Am. J. Orthod. Dentofacial Orthop. 2014;146(5):673-682. https://doi.org/10.1016/j.ajodo.2014.07.023.
15. Hajeer MY, Millett DT. Applications of 3D imaging in orthodontics: part I. J. Orthod. 2004;31:62-70. https://doi.org/10.1179/146531204225011346.
16. Harrell ER. An evidence-based evaluation of three-dimen-sional scanning technology in orthodontic practice. Decis. Dent. 2018;4:17-20. https://pmc.ncbi.nlm.nih.gov/articles/PMC8834929/.
17. Imburgia M, Logozzo S, Hauschild U, Veronesi G, Mangano C, Mangano FG. Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study. BMC Oral Health. 2017;17(1):92. https://doi.org/10.1186/s12903-017-0383-4.
18. Joda T, Bragger U. Digital vs. conventional implant prosthetic workflows: a cost/time analysis. Clin. Oral Implants Res. 2015;26(12):1430-1435. https://doi.org/10.1111/clr.12476.
19. Joda T, Lenherr P, Dedem P, Kovaltschuk I, Bragger U, Zitzmann NU. Time efficiency, difficulty, and operator’s preference comparing digital and conventional implant impressions: a randomi-zed controlled trial. Clin. Oral Implants Res. 2017;28(10):1318-1323.
20. Kim J, Park JM, Kim M, Heo SJ, Shin IH, Kim M. Comparison of experience curves between two 3-dimensional intraoral scanners. J. Prosthet. Dent. 2016;116(2);221-230. https://doi.org/10.1111/clr.12982.
21. Kirschneck C, Kamuf B, Putsch C, Chhatwani S, Bizhang M, Danesh G. Conformity, reliability and validity of digital dental models created by clinical intraoral scanning and extraoral plaster model digitization workflows. Comput. Biol. Med. 2018;1(100):114-122. https://doi.org/10.1016/j.compbiomed.2018.06.035.
22. Kong L, Li Y, Liu Z. Digital versus conventional full-arch impressions in linear and 3D accuracy: a systematic review and meta-analysis of in vivo studies. Clin. Oral Investig. 2022;26(9):5625-5642. https://doi.org/10.1007/s00784-022-04607-6.
23. Kuhr F, Schmidt A, Rehmann P, Wstmann B. A new method for assessing the accuracy of full arch impressions in patients. J. Dent. 2016;55:68-74. https://doi.org/10.1016/j.jdent.2016.10.002.
24. Lawson NC, Burgess JO. Clinicians reaping benefits of new concepts in impressioning. Compend. Contin. Educ. Dent. 2015;36(2):152-153. https://pubmed.ncbi.nlm.nih.gov/25822643/.
25. Lecocq G. Digital impression-taking: fundamentals and ben-efits in orthodontics. Int. Orthod. 2016;14(2):184-194. https://doi.org/10.1016/j.ortho.2016.03.003.
26. Lee SJ, Gallucci GO. Digital vs. conventional implant impressions: efficiency outcomes. Clin. Oral Implants Res. 3013;24(1):111-115. https://doi.org/10.1111/j.1600-0501.2012.02430.x.
27. Lee SJ, Macarthur 4th RX, Gallucci GO. An evaluation of student and clinician perception of digital and conventional implant impressions. J. Prosthet. Dent. 2013;110(5):420-423. https://doi.org/10.1016/j.prosdent.2013.06.012.
28. Lim JH, Park JM, Kim M, Heo SJ, Myung JY. Comparison of digital intraoral scanner reproducibility and image trueness considering repetitive experience. J Prosthet Dent. 2018 Feb;119(2):225-232. https://doi.org/10.1016/j.prosdent.2017.05.002.
29. Logozzo S, Franceschini G, Kilpela A, Caponi M, Governi L, Blois L. A comparative analysis of intraoral 3D digital scanners for restorative dentistry. Int J Med Tech. 2011. http://dx.doi.org/10.5580/1b90.
30. Logozzo S, Zanetti EM, Franceschini G, Kilpela A, Makynen A. Recent advances in dental optics — part I: 3D intraoral scanners for restorative dentistry. Optic. Lasers Eng. 2014;54(3):203-221. http://dx.doi.org/10.1016/j.optlaseng.2013.07.017.
31. Mandelli F, Ferrini F, Gastaldi G, Gherlone E, Ferrari M. Improvement of a digital impression with conventional materials: overcoming intraoral scanner limitations. Int. J. Prosthodont. 2017;30(4):373-376. https://doi.org/10.11607/ijp.5138.
32. Mangano A, Beretta M, Luongo G, Mangano C, Mangano F. Conventional vs digital impressions: acceptability, treatment comfort and stress among young orthodontic patients. Open Dent. J. 2018;31(12):118-124. https://doi.org/10.2174/1874210601812010118.
33. Mangano F, Gandolfi A, Luongo G, Logozzo S. Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health. 2017;17(1):149. https://doi.org/10.1186/s12903-017-0442-x.
34. Marcel T. Three-dimensional on-screen virtual models. Am. J. Orthod. Dentofacial Orthop. 2001;119:666-668. https://doi.org/10.1067/mod.2001.116502.
35. Martin CB, Chalmers EV, McIntyre GT, Cochrane H, Mossey PA. Orthodontic scanners: what’s available? J. Orthod. 2015;42(2):136-143. https://doi.org/10.1179/1465313315Y.0000000001.
36. Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA Group: preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://pmc.ncbi.nlm.nih.gov/articles/PMC3090117/.
37. Morris JB. CAD/CAM options in dental implant treatment planning. J. Calif. Dent. Assoc. 2010;38:333-336. PMID: 20572527.
38. Naidu D, Freer TJ. Validity, reliability, and reproducibility of the iOC intraoral scanner: a comparison of tooth widths and Bolton ratios. Am. J. Orthod. Dentofacial Orthop. 2013;144(2):304-310. https://doi.org/10.1016/j.ajodo.2013.04.011.
39. Nedelcu R, Olsson P, Nystrm I, Rydn J, Thor A. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: a novel in vivo analysis method. J. Dent. 2018;69:110-118. https://doi.org/10.1016/j.jdent.2017.12.006.
40. Park JH, Laslovich J. Trends in the Use of Digital Study Mo–dels and Other Technologies Among Practicing Orthodontists. J Clin Orthod. 2016 Jul;50(7):413-9. PMID: 27575885.
41. Park HR, Park JM, Chun YS, Lee KN, Kim M. Changes in views on digital intraoral scanners among dental hygienists after training in digital impression taking. BMC Oral Health. 2015;15(1):151. https://doi.org/10.1186/s12903-015-0140-5.
42. Patzelt SB, Lamprinos C, Stampf S, Att W. The time efficiency of intraoral scanners: an in vitro comparative study. J. Am. Dent. Assoc. 2014;145(6):542-551. https://doi.org/10.14219/jada.2014.23.
43. San Jos V, Bellot-Arcs C, Tarazona B, Zamora N, La–gravre ОM, Paredes-Gallardo V. Dental measurements and Bolton index reliability and accuracy obtained from 2D digital, 3D segmented CBCT, and 3d intraoral laser scanner. J Clin Exp Dent. 2017 Dec 1;9(12):e1466-e1473. https://doi.org/10.4317/jced.54428.
44. Sfondrini MF, Gandini P, Malfatto M, Di Corato F, Trovati F, Scribante A. Computerized casts for orthodontic purpose using powder-free intraoral scanners: accuracy, execution time, and patient feedback. Biomed. Res. Int. 2018;23(2018):4103232. https://doi.org/10.1155/2018/4103232.
45. Sun L, Lee JS, Choo HH, Hwang HS, Lee KM. Reprodu–cibility of an intraoral scanner: a comparison between in- vivo and ex-vivo scans. Am. J. Orthod. Dentofacial Orthop. 2018;154(2):305-310. https://doi.org/10.1016/j.ajodo.2017.09.022.
46. Ting-Shu S, Jian S. Intraoral digital impression technique: a review. J. Prosthodont. 2015;24(4):313-321. https://doi.org/10.1111/jopr.12218.
47. Winkler J, Gkantidis N. Trueness and precision of intraoral scanners in the maxillary dental arch: an in vivo analysis. Sci. Rep. 2020;10(1):1172. https://doi.org/10.1038/s41598-020-58075-7.
48. Wiranto MG, Engelbrecht WP, Tutein Nolthenius HE, van der Meer WJ, Ren Y. Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. Am. J. Orthod. Dentofacial Orthop. 2013;143(1):140-147. https://doi.org/10.1016/j.ajodo.2012.06.018.
49. Wismeijer D, Mans R, van Genuchten M, Reijers HA. Patients’ preferences when comparing analogue implant impressions using a polyether impression material versus digital impressions (Intraoral Scan) of dental implants. Clin. Oral Implants Res. 2014;25(10):1113-1118. https://doi.org/10.1111/clr.12234.
50. Yoon JH, Yu HS, Choi Y, Choi TH, Choi SH, Cha JY. Mo-del Analysis of Digital Models in Moderate to Severe Crowding: In Vivo Validation and Clinical Application. Biomed Res Int. 2018 Jan 14;2018:8414605. https://doi.org/10.1155/2018/8414605.
51. Yuzbasioglu E, Kurt H, Turunc R, Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health 2014;30(14):10. https://doi.org/10.1186/1472-6831-14-10.
52. Zimmermann M, Mehl A, Mrmann WH, Reich S. Intraoral scanning systems — a current overview. Int. J. Comput. Dent. 2015;18(2):101-129. PMID: 26110925. https://www.quintessence-publishing.com/deu/en/article/833574.

Вернуться к номеру