Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



UkraineOncoGlobal

UkraineOncoGlobal

Журнал «Практическая онкология» Том 4, №3, 2021

Вернуться к номеру

Рапаміцин знижує експресію рецепторів гіалуронану в клітинних лініях раку молочної залози MCF-7 та MDA-MB-231

Авторы: Tuna Onal (1), Mustafa Oztatlici (1), Melike Ozgul-Onal (2), Hülya Birinci (3), Mahmud Kemal Ozbilgin(1), Vissun Sevinç Inan (4)
(1) — Manisa Celal Bayar University, Faculty of Medicine, Department of Histology & Embryology, Manisa, Turkey
(2) — Mugla Sitki Kocman University, Faculty of Medicine, Department of Histology & Embryology, Mugla, Turkey
(3) — Gaziantep University, Faculty of Medicine, Department of Histology & Embryology, Gaziantep, Turkey
(4) — Izmir Economy University, Faculty of Medicine, Department of Histology & Embryology, Izmir, Turkey

Рубрики: Онкология

Разделы: Клинические исследования

Версия для печати


Резюме

Актуальність. Рецептори гіалуронану відіграють певну роль при різних типах раку. Однак зміни, що відбуваються в рецепторах CD44 та RHAMM після введення рапаміцину, потребують пояснення. Мета дослідження: вивчити зміни рецепторів гіалуронової кислоти CD44 і RHAMM після введення рапаміцину в клітинних лініях MCF-7 та MDA-MB-231. Матеріали та методи. Клітинні лінії MCF-7 і MDA-MB-231 культивували в стандартних умовах та забарвлювали з використанням первинних антитіл до CD44 і RHAMM для виявлення білків. Значення H-score визначали за інтенсивністю імунореактивності. Рівень експресії CD44 і RHAMM оцінювали за допомогою методу полімеразної ланцюгової реакції в реальному часі (qRT-ПЛР). Результати. У клітинних лініях MCF-7 і MDA-MB-231 імунореактивність CD44 та RHAMM знизилася на 24-ту годину після введення рапаміцину порівняно з контрольною групою. Відповідно до результатів використання qRT-ПЛР, експресія CD44 (p < 0,033) та RHAMM (p < 0,0002) зменшилася в групі, що отримувала рапаміцин, порівняно з контрольною групою. Висновки. Рапаміцин знижував вплив рецепторів гіалуронану на клітинні лінії раку молочної залози. Таким чином, знову наголошено на важливості позаклітинного матриксу при раку молочної залози.

Background. Hyaluronan receptors play a role in various types of cancer. However, the changes occurring in CD44 and RHAMM after rapamycin administration are waiting to be explained. We aimed to investigate the changes in the hyaluronic acid receptors CD44 and RHAMM after rapamycin was administered in MCF-7 and MDA-MB-231 cell lines. Materials and methods. MCF-7 and MDA-MB-231 cell lines were cultured under standard conditions. The cell lines were stained with primary antibodies of CD44 and RHAMM to show the proteins. The H-score values were determined by the intensity of immunoreactivity. QRT-PCR was used to detect the expression of CD44 and RHAMM. Results. In the MCF-7 and MDA-MB-231 cell lines, the immunoreactivity of CD44 and RHAMM decreased at the 24th hour after rapamycin administration compared to the control group. According to the qRT-PCR results, the expression of CD44 (p < 0.033), and RHAMM (p < 0.0002) decreased in the rapamycin group compared to the control group. Conclusions. Rapamycin reduced the effect of hyalorunan receptors on breast cancer cell lines. Thus, the importance of the extracellular matrix in breast cancer has emerged once again.


Ключевые слова

MCF-7; MDA-MB-231; рак молочної залози; рапаміцин; рецептори гіалуронану; CD44; RHAMM

MCF-7; MDA-MB-231; breast cancer; rapamycin; hyalorunan receptors; CD44; RHAMM


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Barzaman K., Karami J., Zarei Z., Hosseinzadeh A., Kazemi M.H., Moradi-Kalbolandi S., Safari E., Farahmand L. Breast cancer: Biology, biomarkers, and treatments. International Immunopharmacology. 2020 Jul. 84. 106535. doi: 10.1016/j.intimp.2020.106535. Epub 2020, Apr 29. PMID: 32361569.
2. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021 May. 71(3). 209-249. doi: 10.3322/caac.21660. Epub 2021, Feb 4. PMID: 33538338.
3. Herrera-Gayol A., Jothy S. Effects of hyaluronan on the invasive properties of human breast cancer cells in vitro. Int. J. Exp. Pathol. 2001 Jun. 82(3). 193-200. doi: 10.1046/j.1365-2613.2001.iep0082-0193-x. PMID: 11488992; PMCID: PMC2517708.
4. Hamilton S.R., Fard S.F., Paiwand F.F., Tolg C., Veiseh M., Wang C., McCarthy J.B., Bissell M.J., Koropatnick J., Turley E.A. The hyaluronan receptors CD44 and Rhamm (CD168) form complexes with ERK1,2 that sustain high basal motility in breast cancer cells. J. Biol. Chem. 2007, Jun 1. 282(22). 16667-16680. doi: 10.1074/jbc.M702078200. Epub 2007, Mar 28. PMID: 17392272; PMCID: PMC2949353.
5. Toole B.P. Hyaluronan-CD44 Interactions in Cancer: Paradoxes and Possibilities. Clin. Cancer Res. 2009, Dec 15. 15(24). 7462-7468. doi: 10.1158/1078-0432.CCR-09-0479. PMID: 20008845; PMCID: PMC2796593.
6. Al-Othman N., Alhendi A., Ihbaisha M., Barahmeh M., Alqaraleh M., Al-Momany B.Z. Role of CD44 in breast cancer. Breast Dis. 2020. 39(1). 1-13. doi: 10.3233/BD-190409. PMID: 31839599.
7. Carvalho A.M., Soares da Costa D., Paulo P.M.R., Reis R.L., Pashkuleva I. Co-localization and crosstalk between CD44 and RHAMM depend on hyaluronan presentation. Acta Biomater. 2021, Jan 1. 119. 114-124. doi: 10.1016/j.actbio.2020.10.024. Epub 2020, Oct 20. PMID: 33091625.
8. Misra S., Hascall V.C., Markwald R.R., Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front. Immunol. 2015, May 6. 6. 201. doi: 10.3389/fimmu.2015.00201. PMID: 25999946; PMCID: PMC4422082.
9. Turley E.A. Hyaluronan and cell locomotion. Cancer Metastasis Rev. 1992 Mar. 11(1). 21-30. doi: 10.1007/BF00047600. PMID: 1380898.
10. Maxwell C.A., McCarthy J., Turley E. Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J. Cell. Sci. 2008, Apr 1. 121(Pt 7). 925-932. doi: 10.1242/jcs.022038. PMID: 18354082.
11. Tolg C., McCarthy J.B., Yazdani A., Turley E.A. Hyaluronan and RHAMM in wound repair and the “cancerization” of stromal tissues. Biomed. Res. Int. 2014. 2014. 103923. doi: 10.1155/2014/103923. Epub 2014, Aug 4. PMID: 25157350; –PMCID: PMC4137499.
12. Korkes F., de Castro M.G., de Cassio Zequi S., Nardi L., Del Giglio A., de Lima Pompeo A.C. Hyaluronan-mediated motility receptor (RHAMM) immunohistochemical expression and androgen deprivation in normal peritumoral, hyperplasic and neoplastic prostate tissue. BJU Int. 2014 May. 113(5). 822-829. doi: 10.1111/bju.12339. Epub 2013, Oct 31. PMID: 24053431.
13. Du W., Gerald D., Perruzzi C.A., Rodriguez-Waitkus P., Enayati L., Krishnan B., Edmonds J., Hochman M.L., Lev D.C., Phung T.L. Vascular tumors have increased p70 S6-kinase activation and are inhibited by topical rapamycin. Lab. Invest. 2013 Oct. 93(10). 1115-1127. doi: 10.1038/labinvest.2013.98. Epub 2013, Aug 12. PMID: 23938603.
14. Ge Y., Chen J. Mammalian target of rapamycin (mTOR) signaling network in skeletal myogenesis. J. Biol. Chem. 2012, Dec 21. 287(52). 43928-35. doi: 10.1074/jbc.R112.406942. Epub 2012, Oct 31. PMID: 23115234; PMCID: PMC3527976.
15. LoRusso P.M. Mammalian target of rapamycin as a rational therapeutic target for breast cancer treatment. Oncology. 2013. 84(1). 43-56. doi: 10.1159/000343063. Epub 2012, Oct 30. PMID: 23128843.
16. Li J., Kim S.G., Blenis J. Rapamycin: one drug, many effects. Cell. Metab. 2014, Mar 4. 19(3). 373-379. doi: 10.1016/j.cmet.2014.01.001. Epub 2014, Feb 6. PMID: 24508508; PMCID: PMC3972801.
17. Menon S., Manning B.D. Common corruption of the mTOR signaling network in human tumors. Oncogene. 2008 Dec. 27. Suppl. 2 (02). 43-51. doi: 10.1038/onc.2009.352. PMID: 19956179; PMCID: PMC3752670.
18. Ekizceli G., Uluer E.T., Inan S. Investigation of the effects of rapamycin on the mTOR pathway and apoptosis in metastatic and non-metastatic human breast cancer cell lines. Bratisl. Lek. Listy. 2020. 121(4). 308-315. doi: 10.4149/BLL_2020_049. PMID: 32356448.
19. Fırat F., Özgül M., Türköz Uluer E., Inan S. Effects of caffeic acid phenethyl ester (CAPE) on angiogenesis, apoptosis and oxidatıve stress ın various cancer cell lines. Biotech. Histochem. 2019 Oct. 94(7). 491-497. doi: 10.1080/10520295.2019.1589574. Epub 2019, Apr 17. PMID: 30991851.
20. Ozdemir A.T., Oztatlici M., Ozgul-Ozdemir R.B., Cakır B., Ozbilgin K., Dariverenli E., Kirmaz C. The effects of preconditioning with IFN-γ, IL-4, and IL-10 on costimulatory ligand expressions of mesenchymal stem cells. Int. J. Med. Biochem. 2021. 4(2). 121-130. doi: 10.14744/ijmb.2021.77487.
21. Hare S.H., Harvey A.J. mTOR function and therapeutic targeting in breast cancer. Am. J. Cancer Res. 2017, Mar 1. 7(3). 383-404. PMID: 28400999; PMCID: PMC5385631.
22. Sun S.Y., Rosenberg L.M., Wang X., Zhou Z., Yue P., Fu H., Khuri F.R. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 2005, Aug 15. 65(16). 7052-7058. doi: 10.1158/0008-5472.CAN-05-0917. PMID: 16103051.
23. Senbanjo L.T., Chellaiah M.A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell. Dev. Biol. 2017, Mar 7. 5. 18. doi: 10.3389/fcell.2017.00018. PMID: 28326306; PMCID: PMC5339222.
24. Afify A., Purnell P., Nguyen L. Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Exp. Mol. Pathol. 2009 Apr. 86(2). 95-100. doi: 10.1016/j.yexmp.2008.12.003. Epub 2009, Jan 6. PMID: 19167378.
25. Bellerby R., Smith C., Kyme S., Gee J., Günthert U., Green A., Rakha E., Barrett-Lee P., Hiscox S. Overexpression of Specific CD44 Isoforms Is Associated with Aggressive Cell Features in Acquired Endocrine Resistance. Front. Oncol. 2016, Jun 20. 6. 145. doi: 10.3389/fonc.2016.00145. PMID: 27379207; PMCID: PMC4913094.
26. Chen C., Zhao S., Karnad A., Freeman J.W. The biology and role of CD44 in cancer progression: therapeutic implications. J. Hematol. Oncol. 2018, May 10. 11(1). 64. doi: 10.1186/s13045-018-0605-5. PMID: 29747682; PMCID: PMC5946470.
27. Bai J., Chen W.B., Zhang X.Y., Kang X.N., Jin L.J., Zhang H., Wang Z.Y. HIF-2α regulates CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/AKT/mTOR signaling. World J Stem Cells. 2020, Jan 26. 12(1). 87-99. doi: 10.4252/wjsc.v12.i1.87. PMID: 32110277; PMCID: PMC7031759.
28. Chen H., Mohan P., Jiang J., Nemirovsky O., He D., Fleisch M.C., Niederacher D., Pilarski L.M., Lim C.J., Maxwell C.A. Spatial regulation of Aurora A activity during mitotic spindle assembly requires RHAMM to correctly localize TPX2. Cell Cycle. 2014. 13(14). 2248-2261. doi: 10.4161/cc.29270. Epub 2014, May 29. PMID: 24875404; PMCID: PMC4111680.
29. Wang J., Li D., Shen W., Sun W., Gao R., Jiang P., Wang L., Liu Y., Chen Y., Zhou W., Wang R., Xiang R., Stupack D., Luo N. RHAMM inhibits cell migration via the AKT/GSK3β/Snail axis in luminal A subtype breast cancer. Anat. Rec. (Hoboken). 2020 Sep. 303(9). 2344-2356. doi: 10.1002/ar.24321. Epub 2019, Dec 10. PMID: 31769593.
30. Wang Z., Wu Y., Wang H., Zhang Y., Mei L., Fang X., Zhang X., Zhang F., Chen H., Liu Y., Jiang Y., Sun S., Zheng Y., Li N., Huang L. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc. Natl Acad. Sci. USA. 2014, Jan 7. 111(1). 89-98. doi: 10.1073/pnas.1319190110. Epub 2013, Dec 23. Erratum in: Proc. Natl Acad. Sci. USA. 2016, Nov 14. PMID: 24367099; PMCID: PMC3890879.
31. Schütze A., Vogeley C., Gorges T. et al. RHAMM splice variants confer radiosensitivity in human breast cancer cell lines. Oncotarget. 2016, Apr 19. 7(16). 21428-21440. doi: 10.18632/oncotarget.7258. PMID: 26870892; PMCID: PMC5008296.

Вернуться к номеру